科研进展
   新闻动态
      科研进展
      综合新闻
      传媒扫描
现在位置:首页 > 新闻动态 > 科研进展
关于带Dirichlet边界条件的Gross--Pitaevskii 方程的半经典极限(张平)
2022-05-12 | 编辑:

  In this paper, we justify the semiclassical limit of the Gross--Pitaevskii equation with Dirichlet boundary condition on the three-dimensional upper space under the assumption that the leading-order terms to both initial amplitude and initial phase function are sufficiently small in some high enough Sobolev norms. We remark that the main difficulty of the proof lies in the fact that the boundary layer appears in the leading-order terms of the amplitude functions and the gradient of the phase functions to the WKB expansions of the solutions. In particular, we partially solved the open question proposed in [D. Chiron and F. Rousset, Comm. Math. Phys., 288 (2009), pp. 503--546; C. T. Pham, C. Nore, and M. E. Brachet, Phys. D, 210 (2005), pp. 203--226] concerning the semiclassical limit of the Gross--Pitaevskii equation with Dirichlet boundary condition. 

   

  Publication: 

  SIAM Journal on Mathematical Analysis Vol. 54, Iss. 1 

   

  Author: 

  Guilong Gui 

  School of Mathematics, Northwest University, Xi’an 710069, China. 

  E-mail: glgui@amss.ac.cn 

    

  Ping Zhang 

  Academy of Mathematics & Systems Science and Hua Loo-Keng Key Laboratory of Mathematics, The Chinese Academy of Sciences, Beijing 100190, China, and School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. 

  E-mail: zp@amss.ac.cn  

附件下载:
 
 
【打印本页】【关闭本页】
   |      |      |      |   联系我们   |   友情链接

太阳集团所有网址16877|首頁(欢迎你)